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Abstract

The lattice Boltzmann method (LBM) is applied to simulate the two-dimensional incompressible steady low Reynolds number back-
ward-facing step flows. In order to restrict the approach to the two-dimensional flow, the largest Reynolds number chosen was Re = 200.
To increase the uniformity of the radial temperature profile for fluid flow in channel and consequently to enhance the heat transfer, the
inserted square blockage is used and investigated numerically. In addition, the field synergy principle is also applied to demonstrate that
an interruption within fluid results in decreased intersection angle between the velocity and temperature gradient. The numerical results
of velocity and temperature field agree well with the available experimental and numerical results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The kinetic nature of the lattice Boltzmann method
(LBM) as a relatively new numerical scheme has achieved
considerable success in simulating fluid flows and associ-
ated transport phenomena in the pass ten years [1]. Unlike
conventional numerical schemes based on discretizations of
macroscopic continuum equation, the LBM is based on
microscopic models and mesoscopic kinetic equation.
These algorithms are based on the idea of trying to model
a fluid by simulating a discretized one-particle phase space
distribution function similar to the one described by the
traditional Boltzmann equation. It treats the fluid on a sta-
tistical level and simulates the movement and interaction of
single particle or ensemble-average particle density distri-
bution function by solving a velocity discrete Boltzmann
equation. The fundamental idea of the LBM is to construct
simplified kinetic models that incorporate the essential
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physics of microscopic or mesoscopic processes so that
the macroscopic averaged properties obey the desired mac-
roscopic equations.

The lattice Boltzmann equation as a numerical scheme
was first proposed by McNamara and Zanetti [2]. It ne-
glects individual particle motion and results in smooth
macroscopic behavior. Higuera and co-workers [3,4] intro-
duced a linearized collision operator to simplify the scheme
and statistical noise is completely eliminated in both mod-
els. A particularly simple linearized version of the collision
operator makes use of a relaxation time towards an equilib-
rium value using a single relaxation time parameter. The
relaxation term is known as the Bhatnagar–Gross–Krook
(BGK) collision operator [5]. This model is called the lat-
tice Boltzmann BGK model. Use of this collision operator
makes the computations much faster. Due to the extreme
simplicity, the lattice BGK (LBGK) equation [6] has
become the most popular lattice Boltzmann model.

The channel flow over a backward-facing step is often
used to evaluate the accuracy of various numerical
schemes. The main character is a recirculation region just
downstream of the step. At the enlargement, the flow
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Fig. 1. The nine-velocity LBM model on the 2-D square lattice.

Nomenclature

c lattice streaming speed
cp specific heat capacity
cs sound of speed
ER channel expansion ratio, H/h
fa density distribution function
f eq
a equilibrium distribution function for fa
ga energy distribution function
geqa equilibrium distribution function for ga
H channel width downstream of step
h step height
Int integral, Int ¼

R
X qcpð~V � rT Þ dxdy

k thermal conductivity
Nu Nusselt number
Nu average Nusselt number
Pe Pelect number, Pr * Re

Pr Prandtl number
p pressure
Re Reynolds number
T temperature
T* dimensionless temperature T � Tw/Tin � Tw

U maximum velocity in the inlet
~V velocity vector

w inserted square blockage width
XR reattachment location

Greek symbols

st relaxation time for fa
sc relaxation time for ga
e internal energy
v diffusivity
X integral area
q density
t kinematic viscosity
d small parameter
dx lattice spacing
dt time step
h intersection angle between the velocity and tem-

perature gradient

Subscripts
in inlet
m mean
w wall
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velocity is suddenly reduced and as a consequence the pres-
sure is increased. Fluid particles near the lower wall are un-
able to negotiate the sudden ‘‘drop’’, causing the formation
of a recirculation bubble just downstream of the sudden
enlargement. As a result, the prediction of such quantities
as the reattachment length (length of the recirculation bub-
ble downstream of the step) tends to compare poorly with
experimental data.

The length of the recirculation region is a function of the
geometry (expansion ratio), the fluid momentum (Reynolds
number) as well as the flow regime (laminar or turbulent).
Also there are three important parameters which exert a
great influence on the fluid mechanics and heat transfer
in the backward-facing step, i.e. Reynolds number Re,
channel expansion ER, and Prandtl number Pr. Such a
flow pattern has a large number of practical engineering
applications, including airfoils, electrical device, diffuser,
and combustors. Kondoh et al. [7] used traditional CFD
method to simulate laminar heat transfer in a separating
and reattaching flow, and the numerical results agree very
well with the experiment data of Aung [8] and Hall and
Pletcher [9].

Based on an analog between heat convection and heat
conduction, Guo and co-workers [10,11] studied the mech-
anism of convective heat transfer from a second look and
proposed novel approaches of enhancing convective heat
transfer under the parabolic fluid flow structure. The con-
vection term can be transformed into the form of dot prod-
uct of velocity and temperature gradient, and integrated
the energy equation over the thermal boundary layer.
These novel approaches involve improving the uniformity
of velocity and temperature profiles as well as reducing
the included angle between dimensionless velocity and tem-
perature gradient vectors. Tao and co-workers [12,13]
called this concept the field synergy principle and extended
from parabolic to elliptic fluid flow and other transport
phenomenon. The field synergy theorem was also applied
to analyze the thermal performance of our cases.

The objective of this paper is to investigate the velocity
and temperature field of this unique recirculation flow and
compare the predictions with available experimental and
numerical results.

2. Numerical method

2.1. Lattice Boltzmann hydrodynamics model

The nine-velocity LBM model on the 2D square lattice
in Fig. 1, denoted as D2Q9 model, is used in the current
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study for simulating the steady backward-facing step. Let
c = dx/dt = dy/dt be the lattice streaming speed and dx
and dy be the distance a particle moves of grid spacing.
The discrete velocities for D2Q9 model are defined as
follows:

~ea ¼ ð0; 0Þ; a ¼ 0; rest particle

~ea ¼ ð�c; 0Þ; ð0;�cÞ; a ¼ 1; 2; 3; 4

~ea ¼ ð�c;�cÞ; a ¼ 5; 6; 7; 8

ð1Þ

The LBM solves the microscopic kinetic equation for
particle distribution f ð~x; ~V ; tÞ, where~x and ~V is the particle
position and velocity vector, in phase space ð~x; ~V Þ and time
t. The governing equation for density distribution function
is

fað~xþ~eadt; t þ dtÞ � fað~x; tÞ ¼ � 1

st
½fað~x; tÞ � f eq

a ð~x; tÞ� ð2Þ

where st characterizes the relaxation time of the density
distribution function towards the local equilibrium f eq

a .
The equilibrium density distribution is given as

f eq
a ¼ waq 1þ 3~ea � ~V

c2
þ 9

2

ð~ea � ~V Þ2

c4
� 3

2

~V
2

c2

" #
ð3Þ

where w0 ¼ 4
9
, wa ¼ 1

9
for a = 1, 2, 3, 4, wa ¼ 1

36
for a = 5, 6,

7, 8.
The macroscopic density, velocity are calculated by

q ¼
X
a

fa ð4Þ

q~V ¼
X
a

~eafa ð5Þ

Following the same procedure as Hou et al. [14], the
continuity and Navier–Stokes equation can be recovered
through the Chapman–Enskog expansion for the density
distribution function. The detail of derivation of this is
given by Hou and will not be shown here. If only the phys-
ics in the long-wave-length and low-frequency limit are of
interest, the lattice spacing dx and the time increment dt
can be regarded as small parameters of the same order d.
The final results of the Navier–Stokes equation and conti-
nuity equation are as below:

otqþr � ðq~V Þ ¼ 0þOðd2Þ ð6Þ
otðq~V Þ þ r � ðq~V ~V Þ ¼ �rp þ t½r2ðq~V Þ þ rðr � ðq~V ÞÞ�

þOðd2Þ ð7Þ

where p ¼ c2sq is the pressure from the equation of state for
the ideal gas, cs ¼ c=

ffiffiffi
3

p
is the sound speed, and the kine-

matic viscosity is given by

t ¼ ð2st � 1Þ
6

ðdxÞ2

dt
ð8Þ

The Mach number isM ¼ ~V =cs and a low Mach number
assumption invoked as the nearly incompressible limit is
approached, i.e., M � 1. The incompressible Navier–
Stokes equation and continuity equation are expressed as
r � ~V ¼ 0þOðd2Þ ð9Þ

ot~V þ ~V � r~V ¼ �rp
q

þ tr2~V þOðd2Þ ð10Þ
2.2. Lattice Boltzmann thermal model

Generally speaking, the current thermal models fall into
the following classifications: the multispeed approach [15],
the passive scalar temperature distribution approach [16]
and the thermal energy distribution model proposed by
He et al. [17]. The multispeed approach suffers severe
numerical instability, and the temperature variation is
limited to a narrow range and fixed Prandtl number. The
passive scalar temperature distribution approach neglects
viscous heat dissipation and compression work done by
pressure. The thermal energy distribution model is an ade-
quate tool for solving real thermal problems. But there still
exist some shortcomings for this thermal model. First, it
contains one complicated gradient operator term in the
evolution equation for the temperature, and the simplicity
property of the LBM has been lost. Second, since the vis-
cosity is involved not only in the momentum equation
but also in the energy equation, the new variables for the
thermal energy distribution function are used in order to
keep the viscosity consistent in the governing equations
for the thermal energy distribution model and to avoid
the implicitness of the schemes [17]. So, we decided to
choose the simplified thermal model which is proposed
by Peng et al. [18]. The simplified thermal model consider
the fact that the compression work done by the pressure
and the viscous heat dissipation can be neglected for the
incompressible flow, so the gradient term can be dropped
out in the evolution equation since such gradient term is
mainly used to recover these term through the Chapman–
Enskog expansion.

The governing equation for simplified thermal energy
distribution model is

gað~xþ~eadt; t þ dtÞ � gað~x; tÞ ¼ � 1

sc
½gað~x; tÞ � geqa ð~x; tÞ�

ð11Þ

Following the work of He et al. [17], the equilibrium
energy distribution functions g can be written as

geq0 ¼ � 2qe
3

~V
2

c2
ð12Þ

geq1;2;3;4 ¼
qe
9

3

2
þ 3

2

~ea � ~V
c2

þ 9

2

ð~ea � ~V Þ2

c4
� 3

2

~V
2

c2

" #
ð13Þ

geq5;6;7;8 ¼
qe
36

3þ 6
~ea � ~V
c2

þ 9

2

ð~ea � ~V Þ2

c4
� 3

2

~V
2

c2

" #
ð14Þ

where e = DRT/2. In this equation R is the gas constant
and D is the dimension. Then the macroscopic temperature
are calculated by
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qe ¼
X
a

ga ð15Þ

Following the same procedure as presented by Hou
et al. [14], the Chapman–Enskog expansion for the new
thermal energy distribution function can recover macro-
scopic energy equation. Using gð0Þa instead of geqa and
expanding ga about gð0Þa , it can be described by the follow-
ing equation:

ga ¼ gð0Þa þ dgð1Þa þ d2gð2Þa þOðd3Þ ð16Þ

where d is the expansion parameter. To discuss changes in
different time scale, t0 and t1 are introduced as t0 = t,
t1 = dt,. . .; thus

ot ¼ ot0 þ dot1 þ d2ot2 þ � � � ð17Þ
The first-order expansion of Eq. (11) is

ðot0 þ~e � rÞgð0Þa ¼ � 1

sc
gð1Þa ð18Þ

The second-order expansion of Eq. (11) is

ot1gð0Þa þ 1� 1

2sc

� �
ðot0 þ~e � rÞgð1Þa ¼ � 1

sc
gð2Þa ð19Þ

Taking summation of Eqs. (18) and (19), we can get

ot0ðqeÞ þ r � ðq~V eÞ ¼ 0 ð20Þ

ot1ðqeÞ þ 1� 1

2sc

� �
Pð1Þ ¼ 0 ð21Þ

where Pð1Þ ¼ � 2
3
scr2ðqeÞ. Combining Eqs. (20) and (21),

we can get

otðqeÞ þ r � ðq~V eÞ ¼ vr2ðqeÞ þOðM2dT Þ ð22Þ
and the diffusivity v is determined by

v ¼ 2

3
sc �

1

2

� �
dt ð23Þ

No matter in Eq. (2) or (11) we choose, it should be
solved in collision and streaming two steps. The streaming
step needs little computational effort by advancing the data
from neighbor lattice points and the collision step is com-
pletely localized.

2.3. Implementation of the boundary conditions

The implementation of the boundary condition is very
important in the simulation. A difficulty of the LBM is that
the boundary conditions for the distribution function are
not known. One must construct suitable conditions for fa
and ga based on the macroscopic flow variables. This study
concerns three cases with different thermal boundary con-
dition as below:

Case A: The thermal boundary condition is the same as
Kondoh et al. [7] and at the step-side lower wall down-
stream of the step is kept constant high temperature, which
is assumed to be higher than inlet temperature. The other
part of the wall is treated as adiabatic.
Case B: The constant higher inlet temperature and the
other part of the walls are assumed constant lower
temperature.

Case C: Add an inserted square blockage in the back-
ward-facing step geometry. The thermal boundary condi-
tion is the same as case B. To eliminate the effect of
other factors, the inserted blockage is particularly assumed
to be thermally isolated from other heat source. The only
function is to introduce interruption within the fluid.

The non-uniform grid is used for all of the following
numerical simulations. In each run, the following inequal-
ity is used as the criterion of convergence,P

i;jk~V ðxi;j; t þ dtÞ � ~V ðxi;j; tÞkP
i;jk~V ðxi;j; tÞk

6 1:0� 10�6 ð24Þ
P

i;jkT ðxi;j; t þ dtÞ � T ðxi;j; tÞkP
i;jkT ðxi;j; tÞk

6 1:0� 10�6 ð25Þ

where k*k is the L2 norm.

2.3.1. The boundary condition of the velocity field

At inlet the uniform velocity flow is applied and the
velocity is fixed at 0.05. The velocity was chosen to be
lower than 10% of the speed of sound for the LBM simu-
lation to avoid significant compressibility effects which
are known to increase with the square of the Mach number.
Using the bounce-back rule of the non-equilibrium distri-
bution proposed by Zou and He [19] and the equilibrium
density distribution function was computed from the pres-
sure and the given velocity and imposed at the first lattice
column. At the outlet a fixed pressure is imposed in terms
of the equilibrium distribution function. The velocity com-
ponents are extrapolated upstream.

The bounce-back rule of the non-equilibrium distribu-
tion proposed by Zou and He [19] is also used here for
no slip boundary condition on the wall. The density distri-
bution function at the boundary need to satisfy the follow-
ing condition:

f neq
a ¼ f neq

b ð26Þ

where ea and eb have opposite directions. The velocity of
the wall is used when feq for the boundary nodes are calcu-
lated in order to enforce the no-slip boundary condition.

2.3.2. The boundary condition of the temperature field

For the thermal problem, the thermal energy distribu-
tion function at the boundary satisfied:

gneqa � e2af
neq
a ¼ �ðgneqb � e2bf

neq
b Þ ð27Þ

The temperature of the wall is also used when geq for the
boundary nodes are calculated in order to satisfy the given
temperature. Neumann and Dirichlet boundary conditions
are used in the study. For the Dirichlet type condition, the
given temperature is applied on the boundary. For the
Neumann type condition (adiabatic or constant heat flux),
it was transferred to the Dirichlet type condition through
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the conventional second-order finite difference approxima-
tion to get the temperature on the boundary [20]. When the
temperature gradient is given, the temperature on the
boundary can be calculated by

oT
oy

����
x;1

¼ �3T x;1 þ 4T x;2 � T x;3

2Dy
ð28Þ

No matter the adiabatic or constant heat flux boundary
condition we choose, through the Eq. (28) we can get the
corresponding Dirichlet type boundary condition.

2.4. Taylor series expansion and least square based LBM

(TLLBM)

The method proposed by Shu et al. [21] is based on the
well-known fact that the density and energy distribution
functions are continuous function in physical space and
can be well defined in any mesh system. It is derived from
the standard LBM by using Taylor series expansion and
optimized by the least squares method. This method explic-
itly updates the distribution functions at mesh points by an
algebraic formulation and the relevant coefficients are pre-
computed from the coordinates of mesh points. As shown
in Fig. 2, point A represent the position (xA,yA), point A

0

represent the position (xA + eaxdt,yA + eaydt), and point
P represent the position (xP,yP). The distribution functions
of the points A 0, B 0, C 0, D 0, E 0, P 0 can be got from Eqs. (2)
and (11). For the general case, A 0 may not coincide with the
mesh point P. So Taylor series expansion in the spatial
direction is applied in this method. fa(A

0, t + dt) can be
approximated by the corresponding function and its deriv-
atives at mesh point P as

faðA0; t þ dtÞ

¼ faðP ; t þ dtÞ þ DxA
ofaðP ; t þ dtÞ

ox
þ DyA

ofaðP ; t þ dtÞ
oy

þ 1

2
ðDxAÞ2

o2faðP ; t þ dtÞ
ox2

þ 1

2
ðDyAÞ

2 o
2faðP ; t þ dtÞ

oy2

þ DxADyA
o2faðP ; t þ dtÞ

oxoy
þO½ðDxAÞ3; ðDyAÞ

3� ð29Þ
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Fig. 2. Configuration of particle movement along a direction.
It means that after collision there is no information
streaming to the point P and we can use point A 0 to obtain
the information of point P. It also needs neighboring five
points around P because the RHS of Eq. (29) exist six un-
known. The unknown can be decided from the least square
method.

3. Results and discussion

3.1. Overview of the velocity field

The simulation of the flow with a nonuniform rectangu-
lar mesh (601 * 61) in Fig. 3 was conducted. Uniform
square lattice mesh was used before the recirculation zone
and nonuniform rectangular mesh was used after the recir-
culation zone. The ratio of nonuniform to uniform grid size
in x direction is 2. Due to the computational mesh is
uncoupled from the discretization of momentum space
and it can have an arbitrary space. Channel expansion
ratio, ER, is defined as H/h. The Reynolds number Re of
the flow is defined as 4U(H�h)/3t, where U is the maxi-
mum velocity in the inlet. The velocity vector plots of
Fig. 4 provides an overall view of the flow under conditions
where ER = 2 and Re = 105. As might be expected, there
was a recirculation zone behind the step. The locations of
the reattachment points for Re = 100 and 200 are XR/h =
3.18 and 5.5 respectively. This discrepancy of the reattach-
ment locations with the experimental data of Armaly et al.
[22], XR/h = 3.1 and 5.4 for Re = 100 and 200 respectively,
can be attributed to the slight difference in the geometric
configuration of the flow. But the numerical data is close
to the result of He [23], where XR/h = 3.15 with Re =
100. As expected, a larger Reynolds number increases the
length of flow redevelopment downstream of the step.

Fig. 5 shows the velocity vector field with the inserted
square blockage after the enlargement. The flow field
x / h
0 2 4 6 8

Fig. 3. Non-uniform mesh for the backward-facing step flow simulation.

x / h
- 2 0 2 4 6

Fig. 4. Velocity field without blockage (ER = 2, Re = 105).
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Fig. 7. The temperature distribution for case A (a) Re = 10, (b) Re = 20
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Fig. 5. Velocity field with square blockage (ER = 2, Re = 105).
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characteristic is different from Fig. 4 and the recirculation
region is narrowed due to the interruption within flow.
There is also a small recirculation zone behind the blockage
and the overall flow structure is reasonably well predicted.

3.2. Influence of Reynolds number and channel expansion

ratio

The boundary condition of case A is the same as Kondoh
et al. [7] and is convenient for comparison. The result is pre-
sented in Fig. 6, and it shows the influence of the Reynolds
number Re on the local heat transfer distribution on the
bottom heat transfer surface with ER = 1.5 and Pr = 0.7.
As the Reynolds number increases, the peak value of Nu

moves downstream accompanied by a consistently growing
peak value. This movement of the peak values of Nu seems
to be related to the movement of the flow attachment
length. It revealed that the numerical data agrees well with
the results of Kondoh et al. [7] except near the step. The
variation of the local heat transfer characteristics with
Reynolds number can be interpreted by the temperature
distributions presented in Fig. 7. As shown in the figure,
the temperature contours for the non-dimensional tempera-
Fig. 6. Comparison of the Nusselt number between Kondoh et al. [7] and
the present computation for case A (ER = 1.5, Pr = 0.7).
ture T* in increments of 0.1 are displayed. Under the influ-
ence of the reattachment flow, the temperature contours
undergo local distortion around the flow reattachment
point. The thermal boundary layer is then compressed by
the reattachment wall-ward flow. Consequently a layer with
a steep temperature gradient is formed above the wall
around the flow reattachment point. This leads to the heat
transfer enhancement there. Because the recirculation
flow continues to convey there the high temperature fluid
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N
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Fig. 8. Effect of Reynolds number on Nusselt number for case B (ER = 2,
Pr = 0.7).
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Fig. 10. Effect of Reynolds number on Nusselt number for case C
(ER = 2, Pr = 0.7).
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generated on the heat transfer surface, the temperature
variation is concentrated in the separating shear layer just
behind the enlargement step.

Fig. 8 shows the influence of the Reynolds number, Re,
on the local heat transfer distribution on heat transfer sur-
face under case B. It displays almost the same trend as
Fig. 6. The different performance is near the step because
of the different thermal boundary conditions. Due to the
different thermal boundary conditions and Reynolds num-
ber definition, the corresponding Nu is also different. But
the movement of the peak values of Nu is still related to
the movement of the flow attachment length.

Fig. 9 shows the influence of the channel expansion
ratio, ER, on the local heat transfer distribution. The Rey-
nolds number, Re, and the Prandtl number, Pr, are fixed at
105 and 0.7, respectively. As ER increases, the peak loca-
tion of Nu moves upstream and the peak value grows con-
sistently. This movement of the peak location of Nu is
considered again to be due to the movement of the flow-
attachment point. It is naturally understood that the com-
pression of thermal boundary layer by the reattaching flow
becomes stronger with increasing ER.

Case C with a square blockage in the computation do-
main is demonstrated in Fig. 10 and it shows the influence
of the Reynolds number, Re, on the local heat transfer dis-
tribution. The local Nu value is greater than the case with-
out the inserted blockage and the convective heat transfer
performance is better than the previous cases.

3.3. Influence of Prandtl number

The influence of the Prandtl number on the temperature
distribution and the fundamental heat transfer characteris-
tics was investigated. In the LBM algorithm the Pr is de-
fined as

Pr ¼ t
v
¼ st � 1=2

2ðsc � 1=2Þ ð30Þ

When we fixed the Re, the st value was also fixed. The
only method to change Pr number is to select a different
sc value. But the relaxation time of energy distribution
function has some limitations, and it is difficult to simulate
Prandtl number at extreme high and low values. So we
choose at Pr = 1, 0.7 and 0.4 to simulate. Fig. 11 shows
the temperature distribution for various Prandtl numbers
in case B with Re = 105. The contours in these figures
correspond to the non-dimensional temperature T* in
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increments of 0.1. When Prandtl number ranges from 0.4
to 1 (or Pe = 42–105), the convection effect dominates in
most of the region except in the recirculation region. Addi-
tionally, in Fig. 11(a) the convection effect is more evident
than in Fig. 11(c).

Fig. 12 shows the local heat transfer distribution on the
heat transfer surface for various Prandtl number. The sub-
stantial heat transfer enhancement by the reattaching flow
is recognized around the flow attachment point. Nu Con-
tinues to increase with the Prandtl number in the whole re-
gion and the heat transfer enhancement around the flow
reattachment point becomes more and more evident.

3.4. Numerical demonstrations for the relation between

field synergy for enhancing convective heat transfer

The geometric parameter of the inserted square block-
age is w ¼ 1

3
H and the location is as plotted in Fig. 13.

From this series of numerical simulations, better heat
transfer performance is generated when the location of
the inserted blockage is w ¼ 5

6
H from the step and 1

3
H from
H

h

W

5/6 H

1/3 H

a

b
c

de

Fig. 13. The geometry of backward-facing step with inserted square
blockage.
the wall. Fig. 14 reveals the inserted blockage can enhance
thermal performance and the effect is more evident when
the Reynolds number is high. Insertion of a square block-
age increases Nu about 33% at Re = 170.

There are three mechanisms to enhance single phase
convective heat transfer. They are: increasing the flow
interruption, decreasing the thermal boundary layer, and
increasing the velocity gradient near a solid wall [10]. In
this section, case C revealed the inherent relation between
the field synergy principle and demonstrated that increas-
ing the flow interruption can enhance single phase convec-
tive heat transfer.

From the field synergy principle�s point of view, there
are two parameters except Nusselt number, the Int value
and average intersection angle hm, can examine the temper-
ature field thermal efficiency.

The steady state 2D incompressible energy equation
of fluid flow and heat transfer over a backward facing step
is

qcp u
oT
ox

þ v
oT
oy

� �
¼ o

ox
k
oT
ox

� �
þ o

oy
k
oT
oy

� �
ð31Þ

The definition of the Int value is defined in Eq. (32) and
it actually represents the energy transferred by convection.
It implies that the convective heat transfer can be enhanced
by raising the value of the integral of the convection term
(heat source) over the computation domain.

Int ¼
Z
X
qcpð~V � rT Þdxdy ð32Þ

Tao et al. [13] applied the Gauss theorem for reduction
of the integral dimension on the RHS of Eq. (31). Setting
Eq. (31) equal to Eq. (32), we obtain
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Fig. 16. Effect of Reynolds number on average intersection angle with or
without inserted square blockage.
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qcpð~V � rT Þdxdy

¼
Z
abc

~n � krT dS þ
Z
cd
~n � krT dS

þ
Z
de
~n � krT dS þ

Z
ea
~n � krT dS ð33Þ

where ~n represents the outward normal vector along each
boundary and dS is the length differential of each bound-
ary. Using Eq. (33) the Int value over the computation do-
main can be easily calculated. Fig. 15 shows the influence
of the Reynolds number, Re, on the non-dimensional Int
value for a backward-facing step with or without an in-
serted square blockage. The bigger Int value means that
the integral of the convection term and the ability to en-
hance heat transfer is greater. It also means better synergy.
The trend of Fig. 15 is the same as Fig. 14 revealing that
the Int value grows larger as Re increases and the value
with blockage is greater than that without blockage. The
effect becomes more and more evident under high Re.

Eq. (34) gives us a more insight on convective heat
transfer. There are three ways to enhance heat transfer.
They are: increasing Reynolds and Prandtl numbers,
increasing the fullness of dimensionless velocity and tem-
perature profiles, and increasing the included angle be-
tween dimensionless velocity and temperature gradient
vectors.

RePr
Z

ð~V � r~T Þdy ¼ Nu ð34Þ

~V � rT ¼ j~V jjrT j cos h ð35Þ
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Fig. 15. Effect of Reynolds number on dimensionless Int number with or
without inserted square blockage.
Here, hm is the average intersection angle between the
velocity vector and the temperature gradient in the compu-
tation domain. If the local value of h is greater than 90�, its
value is taken as (180� � h) when added to the summation
of the intersection angle [12]. Fig. 16 shows the variation of
average intersection angles with Re for a backward-facing
step with or without an inserted square blockage. It is clear
that a better synergy means decreasing the intersection an-
gle between the velocity vector and the temperature gradi-
ent. This demonstrates that the increased interruption
within flow is due to the decreased intersection angle be-
tween the velocity and temperature gradient. It decreases
about 3� but average Nusselt number increases 33% at
Re = 170. For the synergy principle, there is still much
room to improve the thermal performance in a back-
ward-facing step.

4. Conclusions

In this study, low Reynolds number backward-facing
step flows are simulated using single-relaxation-time mod-
el in the parallel lattice LBM. The numerical results of
velocity and temperature field agree well with the avail-
able experimental and numerical results. When we applied
field synergy principle on temperature field, we demon-
strated that the thermal efficiency can be examined by
Nusselt number, Int value, and average intersection angle
hm. The simplified thermal model which was applied is the
proper LBM thermal model and it can simulate incom-
pressible thermal fluid flow properly. Using inserted
square blockage can enhance convective heat transfer by
way of flow interruption and thermal boundary layer
compression.
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